

WOCOSS: Workshop on Contributions to Open Source Software by Public Institutions

Why do contributions make sense: Digital sustainability within open source projects

02 June 2016

Gabriel Abu-Tayeh

Gabriel Abu-Tayeh

March 2016 to present: PhD Student (Reserach focus: Digital Sustainability) at the Institute of Information Systems and Head of the technology center of information systems (TEWI)

> Experience:

- 2015 Junior Assistant at the University of Bern
- 2014 2015 PostFinance, Compliance US-Team
- 2012 Swiss Financial Market Supervisory Authority, IT Support
- 2010 2013 Binder Corporate Finance/ Manuela Gurtner/ Sozialmedizinisches Zentrum Oberwallis, Assistant of the Management Committee
- 2007 2012 Swisscom IT Services, IT Support

> Education:

- 2014 2016 Master Business Administration, focus on Information Systems (University of Bern)
- 2008 2012 Bachelor Business Administration (University of Bern & Turku School of Economics Finland)

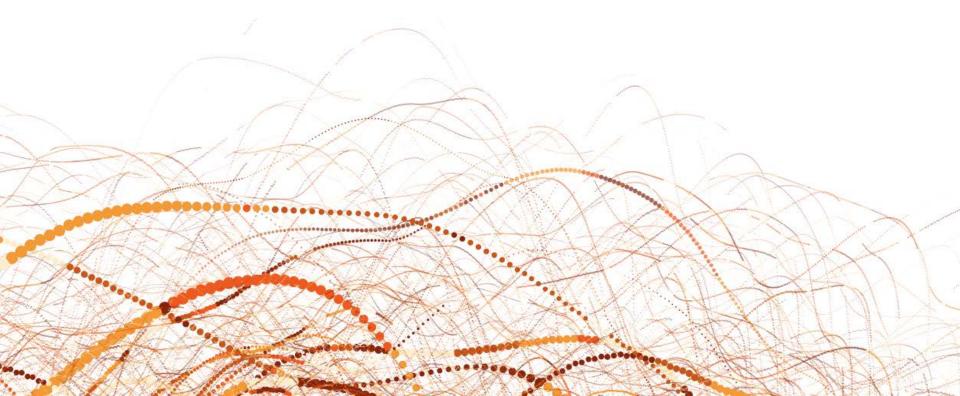
Gabriel Abu-Tayeh PhD Student, Head of the technology center of information systems (TEWI)

Universität Bern Institut für Wirtschaftsinformatik Engehaldenstrasse 8 CH-3012 Bern

gabriel.abu-tayeh@iwi.unibe.ch

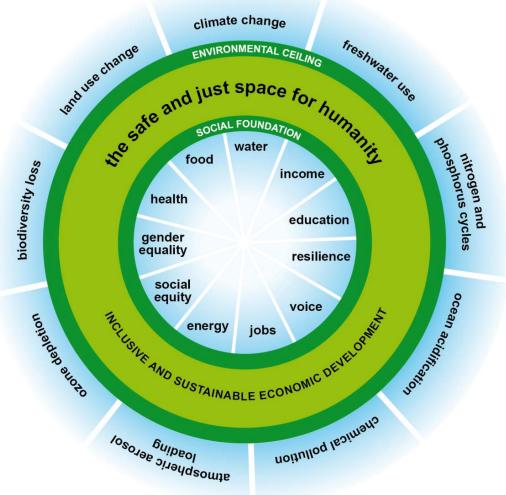
Main question

How do public institutions spend money for information systems in a wisely way?


Wisely means to the benefit of society.

$u^{'}$

UNIVERSITÄT BERN

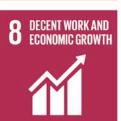

Agenda

- 1. Sustainability and digitalization
- 2. "Private-Collective" Innovation Model

Social Foundation & Environmental Ceiling

Source: Raworth, K., 2012. A safe and just space for humanity: can we live within the doughnut.

Enhancing the state of technology



6

Source: United Nations Department of Economic and Social Affairs, 2015

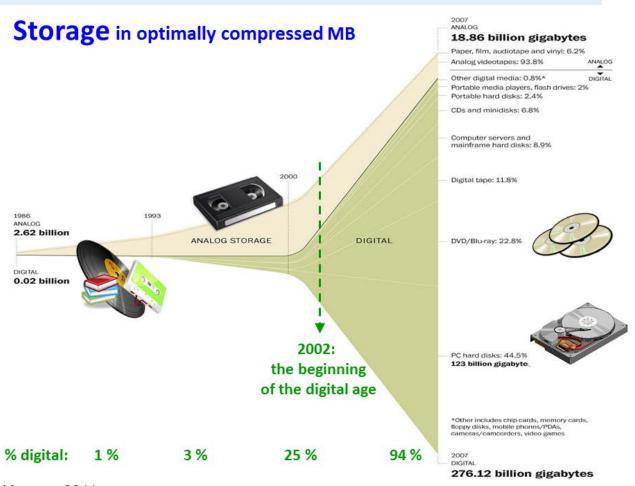
Goals related to technology

- 9.c Significantly increase access to information and communications technology and strive to provide universal and affordable access to the Internet in least developed countries by 2020
- > 17.6 (...) access to science, technology and innovation and enhance knowledge sharing on mutually agreed terms (...)
- > 17.7 Promote the development, transfer, dissemination and diffusion of environmentally sound technologies to developing countries on favourable terms (...)
- > 17.8 Fully operationalize the technology bank and science, technology and innovation capacity-building mechanism for least developed countries by 2017 and enhance the use of enabling technology, in particular information and communications

Source: United Nations Department of Economic and Social Affairs, 2015

technology

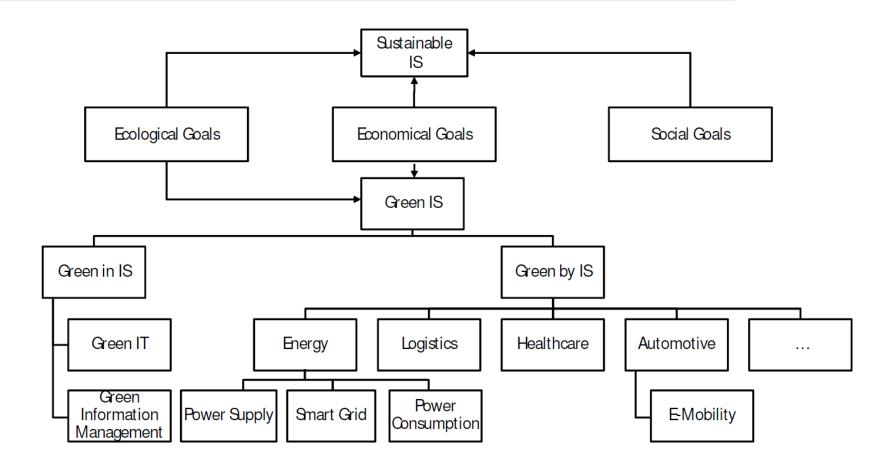
The reason of the importance of technology: Knowledge


b UNIVERSITÄT BERN

Data ~ Information ~ Knowl	edge	
Data Digital go	ods Information Digital go	oods Knowledge
raw unprocessed facts	processed data in context	applied information
name & address on envelope	sorted list of names & addresses organised in house order	the postman organises his delivery round to make his job easier
sales figures for bread at a supermarket	sorted into how much is sold each hour/day	this information is used to plan the baking/purchasing
name & telephone number	sorted in area groups	used for annoying telesales people to waste out time
rain gauge records rainfall	average rainfall for different areas	predict rainfall - weather forecast
milk produced by a cow & fodder/cake eaten by cow	sorted in production figures per cow/day/week/month	amount of feed we require daily/weekly useage and ordering profit from the milk

Source: http://www.chloe.pupil.me.uk/stock%20control%20systems.html, 2016

Data is usually digital



Source: Hilbert and Lopez, 2011

Possible Impacts of digital technologies

UNIVERSITÄT BERN

Source: Kossahl et al., 2012

UNIVERSITÄT Bern

Research of Green Information Systems applied to research on Sustainability

Green by Information Systems

Smart grids (electricity)

- Intelligent logistics

- etc.

Green in Information Systems

- Energy-efficient server farms
- Reuse of raw materials
- etc.

What's about the social dimension?

Green by Information Systems

- Smart grids (electricity)
- Intelligent logistics
- etc.

Social by Information Systems

- Education
- Micro finance
- etc.

Social in Information Systems

- Fair production
- Ethical computing etc.

Green in Information Systems

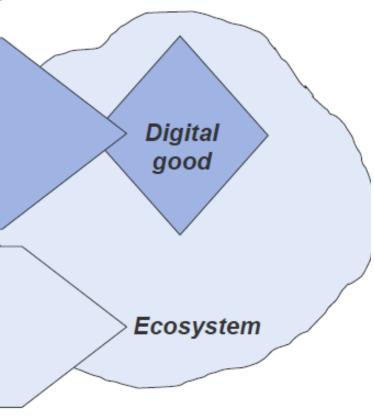
Energy-efficient server farms
 Reuse of raw materials
 etc.

What is in the doughnut?

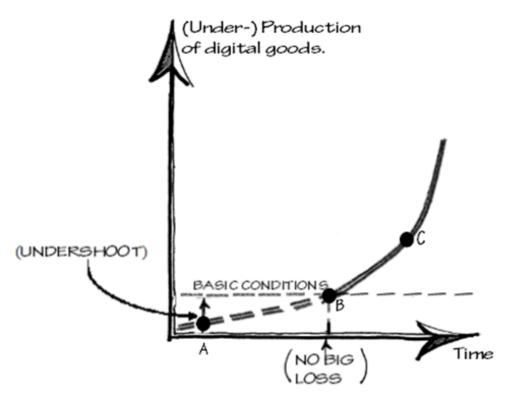
- > So far we discussed:
 - 1. how technology can support the provision of social needs
 - 2. how digital technologies provide improvements for the environmental ability to support the social needs
- Information systems bring humanity closer to the inside of the doughnut
- > Valuable knowledge is created, maintained and developed
- Additionally, people have access to knowledge

(Digital) Knowledge as a resource

	Natural resources	Digital resources
Creation Maintenance Development	Provided without human influence	Need for digital sustainability
Use Consumption Sharing	Need for environmental sustainability	No depletion


Source: Stürmer, Abu-Tayeh, Myrach 2016 "Digital sustainability: Maximizing knowledge for our society" working paper

Basic conditions


9 basic conditions for digital sustainability:

- 1. Open licensing regime
- 2. Transparent structures
- Elaborateness
- Semantic information
- Distributed location
- 6. Shared tacit knowledge
- Participatory culture
- 8. Shared governance
- Diversified funding

Underproduction of knowledge

A = Endangered by loss and underproduction

B = Resilient digital goods

C = Potential of digital goods is developed

What is digital sustainability?

b Universität Bern

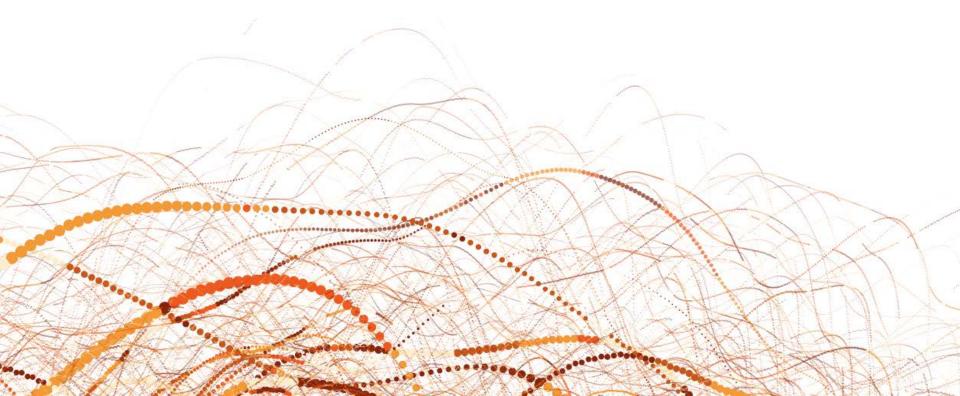
- > "Digital Sustainability creates, develops, maintains and ensures access to digital artifacts in a way that facilitates the greatest possible benefit for society."
- Examples for digital Sustainability:

	in Information Systems	by Information Systems
Ecological	Eco-efficient server	Biodiversity Index
Social	Effective labour law	Tools for education
Economic/Knowledge	Comments in source code	Access to data

Narrower sense (economic/knowledge) of digital sustainability vs.
 broader sense (ecological & social)

Narrower sense of digital sustainability

UNIVERSITÄ BERN


- > Focus on digital resources:
 - How digital goods should be created
 - How digital goods should be maintained
 - How data should be made accessible for potential users
 - How digital goods can be re-used
 - Which formats guarantee long-term availability of data
 - Which devices guarantee long-term availability of data
- Next: basic conditions for the narrower sense of digital sustainability
- Narrower sense does not require ecological or social benefits

$u^{'}$

UNIVERSITÄT BERN

Agenda

- 1. Sustainability and digitalization
- 2. "Private-Collective" Innovation Model

"Private-Collective" Innovation Model

Private Model of Innovation

Benefit:

Intellectual
Property Rights as
an incentive for
innovation

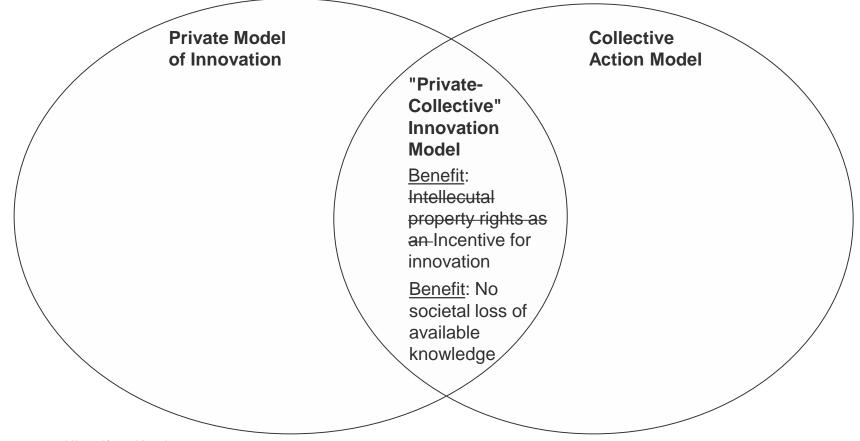
Downside:

Society loses a relative amount of available knowledge

"Private-Collective" Innovation Model

Collective Action Model

Benefit: No societal loss of available knowledge


Downside:

No incentive for innovation

Source: von Hippel/von Krogh 2003

"Private-Collective" Innovation Model

Source: von Hippel/von Krogh 2003

Benefits of the "Private-Collective" Innovation Model

Benefits

Low knowledge protection costs

Learning effects

Reputation gain

Adoption of innovation

Increased innovation at lower costs

Lower manufacturing costs

Faster time to-market (depending on the case)

Source: Stuermer et al. (2009)

Benefits of the "Private-Collective" Innovation Model

Benefits	Findings in the case study
Low knowledge protection costs	Revealing source code rather than protecting it; however, undetermined costs for revealing.
Learning effects	Collaboration with external firms and individuals
Reputation gain	Increased attraction of Nokia as an employer and for building their own developer community
Adoption of innovation	Standard setting of the platform configuration
Increased innovation at lower costs	Reuse of open source software, outsourcing of software testing and bug fixing and maintenance to open source communities. Experimentation and contributions of new applications by lead users
Lower manufacturing costs	No licensing fees for software platform
Faster time to- market	Tapping of distributed technology expertise and high flexibility of software platform
0 0 (1 (0000)	

Source: Stuermer et al. (2009)